制动系统的异响与 NVH 性能关乎行车安全与舒适性。在制动过程中,若刹车片与刹车盘之间存在异物、磨损不均或刹车卡钳回位不畅,会产生尖锐的 “吱吱” 声或沉闷的 “*” 声。此外,制动系统在工作时的振动传递至车身,也可能引发车内的异常振动感受。为检测制动系统的 NVH 问题,通常采用制动噪声测试设备,在模拟制动工况下,测量刹车片与刹车盘的接触压力分布、摩擦系数变化以及制动系统的振动特性。通过高速摄像技术观察制动过程中刹车片与刹车盘的动态接触情况,分析异响产生的瞬间特征,以便针对性地改进制动系统设计,如优化刹车片材料配方、改进刹车卡钳结构等,降**动噪声,提升制动系统的 NVH 性能 。电驱电机控制器执行器的线圈异响检测,通过 AI 深度学习模型比对声纹特征库,识别准确率达 98.5%。上海实时异响检测系统

新型传感器在异响检测中的应用:随着科技发展,新型传感器为下线异响检测带来新的突破。例如,光纤传感器在异响检测中的应用逐渐增多。光纤传感器利用光在光纤中传播的特性,当产品发生振动或产生声音导致光纤受到微小应变时,光的传输特性会发生改变,通过检测这种变化就能精确测量振动和声音信号。与传统传感器相比,光纤传感器具有抗电磁干扰能力强、灵敏度高、可分布式测量等优势。在复杂电磁环境下的工业生产中,如大型变电站附近的电机下线检测,光纤传感器能稳定工作,准确检测到电机的细微异响。此外,MEMS(微机电系统)传感器也在不断革新异响检测技术,其体积小、功耗低、成本低,可大量集成在产品表面,实现对产品***、实时的异响监测。上海实时异响检测系统针对电驱电机冷却风扇执行器的轴承异响检测,采用激光测振仪非接触测量扇叶转子位移。

随着汽车技术的发展,智能传感器与大数据分析在汽车零部件异响和 NVH 检测中发挥着越来越重要的作用。智能传感器可实时采集车辆各系统、各部件的振动、噪声、温度、压力等多源数据,并通过无线传输技术将数据上传至云端。利用大数据分析算法,对海量数据进行挖掘、分析和处理,能够建立车辆 NVH 性能的数字模型,实现对车辆 NVH 状态的实时监测与预测。例如,通过对发动机振动数据的长期分析,可预测发动机零部件的磨损趋势,提前预警可能出现的异响故障;对整车噪声数据的实时监测,能及时发现车辆在行驶过程中突发的 NVH 问题。基于智能传感器与大数据分析的检测技术,**提高了汽车零部件异响和 NVH 检测的效率与准确性,为汽车的智能化维护与管理提供了有力支撑 。
水泵异响检测需联动温度与部件检查。发动机运行 30 分钟后,若冷却液温度超过 95℃且伴随 “呜呜” 声,用红外测温仪测量水泵壳体温度,与缸体温度差超过 10℃即为异常。关闭发动机后,用手转动水泵皮带轮,感受是否有轴承卡滞,正常应转动顺滑无杂音。拆卸水泵后,检查叶轮是否松动,用拉力计测试叶轮与轴的连接强度,拉力应大于 500N。同时检查水泵水封是否漏水,若叶轮背面有锈迹,说明水封失效。安装新水泵时需更换密封垫,并按对角线顺序拧紧固定螺栓(扭矩 15-20Nm),防止壳体变形。电机异响检测需先区分机械异响(如轴承摩擦)与电磁异响(如绕组松动),避免误判故障类型。

